If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x-560=0
a = 4; b = 6; c = -560;
Δ = b2-4ac
Δ = 62-4·4·(-560)
Δ = 8996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8996}=\sqrt{4*2249}=\sqrt{4}*\sqrt{2249}=2\sqrt{2249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2249}}{2*4}=\frac{-6-2\sqrt{2249}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2249}}{2*4}=\frac{-6+2\sqrt{2249}}{8} $
| X+5x=95 | | -5(3y+-9)=0 | | −3(10m+15)+9=−7(2m+5)−1 | | 40.00x+0.60=28.00 | | 8(4x-5)=100 | | 6.5x-5=40.5 | | 5x+3.50=47.00 | | 1/2x+17=19 | | 1/2(x+12)=10 | | 15x+40=280 | | 9x+14=167 | | 13/48=m/100 | | b+-5.004=2.826 | | -9(24-8w)=-288 | | X^2/6x+5=0 | | 2x^2-12x-26=10 | | 2x+(-2x-3=) | | 8(4+x)=6 | | x/11/8=-3 | | X×y=2000 | | t=504+14 | | 8x-1=13-1 | | -3z+9=3 | | X+(x+15)+(2x-15)=180 | | 8=3x=7x | | -47x=0 | | 244+23+b=360 | | 11a+8=9a+10 | | 4(2n+1)=68 | | 20t-98=6t | | y+29=6y-91 | | 14s-61=2s+11 |